HectoMAP and Horizon Run 4: A Cosmological Test with Large-scale Structures at Intermediate Redshifts

Hwang, Ho Seong (KIAS)

Geller, Margaret J.; Park, Changbom; Fabricant, Daniel G.; Kurtz, Michael J.; Rines, Kenneth J.; Kim, Juhan; Diaferio, Antonaldo; Zahid, H. Jabran; Berlind, Perry; Calkins, Michael; Tokarz, Susan; Moran, Sean

November 1, 2016 The 7th KIAS Workshop on Cosmology and Structure Formation

> 95% are dark : Test the Standard Cosmological Model
 > with Large-scale Structure of the Universe

LSS: Any structure of galaxy distribution larger than galaxy clusters (>~10 Mpc)

Physical properties of large-scale structure depend on
 cosmological parameters
 physics of galaxy formation

Q: Do we expect this kinds of largest-scale structures in our standard **ACDM cosmology**?

Largest Structures: Cosmological Tests

* Springel+06 (see Park+90;+12;+15): Ok.

* Sheth & Diaferio 11: The Sloan Great Wall is very unusual; Difficult (4 sigma) to reconcile with the ΛCDM model

SDSS vs. Horizon Run 2: Largest-scale Structures

Q: Do we expect this kinds of largest-scale structures in our standard ACDM cosmology?

A: Yes, for nearby universe (~1.3 Gyrs ago, quantitative analysis in Park+12)

 Only for nearby universe where structure formation is almost complete.
 To fully understand how structure forms in the universe, it is important to study the *evolution of large-scale structure*, sensitive to dark matter and dark energy.

Galactic Extinction E(B-V)

HSC SSP

HectoMAP (Geller, Hwang, Sohn+)

One of densest and complete survey of red galaxies at r<21.3 (20.5)
 HectoMAP: 600-1200 gals/deg², BOSS: ~150 gals/deg²
 Examine the Large-scale Structure at Intermediate Redshifts (Hwang+16, ApJ, 818, 173)

Horizon Runs @ KIAS

One of densest and largest cosmological simulations

	HR1	HR2	HR3	HR4
Model	WMAP5	WMAP5	WMAP5	WMAP5
Ω_M	0.26	0.26	0.26	0.26
$\Omega_{\rm b}$	0.044	0.044	0.044	0.044
Ω_{Λ}	0.74	0.74	0.74	0.74
Spectral index	0.96	0.96	0.96	0.96
$H_0 \ [100 \ \mathrm{km \ s^{-1} Mpc^{-1}}]$	72	72	72	72
σ_8	0.794	0.794	0.794	0.794
Box size $[h^{-1}Mpc]$	6592	7200	10815	3150
No. of grids for initial conditions	4120^{3}	6000 ³	7210^{3}	6300 ³
No. of CDM particles	4120^{3}	6000 ³	7210^{3}	6300^{3}
Starting redshift	23	32	27	100
No. of global time steps	400	800	600	2000
Mean particle separation $[h^{-1}Mpc]$	1.6	1.2	1.5	0.5
Particle mass $[10^{11}h^{-1}M_{\odot}]$	2.96	1.25	2.44	0.0902
Minimum halo mass (30 particles) $[10^{11}h^{-1}M_{\odot}]$	88.8	37.5	73.2	2.706
Mean separation of minimum mass PSB halos $[h^{-1}Mpc]$	13.08	9.01	11.97	4.08

Kim J., Park C. +15

T =11.179 Byrs ago

25 Mpc/h

Large-scale Structures in the HectoMAP and Horizon Runs

In this Talk,

By applying the same criteria to the observations and simulations to identify over- and under-dense large-scale features of the galaxy distribution,

> 1) Compare the Physical Properties of over- and under-dense large scale-structures in HectoMAP and Horizon Run 4, and

> 2) Examine the Probability to find observed largest structures in the simulation.

Identification of Over-dense Large-scale Structure

Richness Distribution of Over-dense LSS

Size Distribution of Over-dense LSS

Identification of Under-dense LSS (Voids)

Volume Distribution of Voids

Size Distribution of Voids

> 1) Compare the Physical Properties of over- and under-dense large scale-structures in HectoMAP and Horizon Run 4, and

► The physical properties of observed large-scale structures at intermediate redshifts (0.22<z<0.44) are remarkably consistent with predictions of the standard ACDM model.

2) Largest Structures: HectoMAP vs. 300 Horizon Run 4 mock surveys

> 2) Examine the Probability to find observed largest structures in the simulation.

► The properties of the largest over- and under-dense structures in HectoMAP are well within the distributions for the largest structures drawn from 300 Horizon Run 4 mock surveys.

In the observations and simulations
 Comparable samples of galaxies and halos
 with the matched number densities

Summary

Statistics for Largest-Scale Structure (over- and under-density structures)
ACDM model is still consistent with observations at 0.22<z<0.44 (~9-11 Gyrs old)</p>

